

EGU25-13751, updated on 05 May 2025
<https://doi.org/10.5194/egusphere-egu25-13751>
EGU General Assembly 2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Advancing Terrestrial ECVs through High-Resolution Hydrological Modeling: Insights from the 4DHydro Project

Ehsan Modiri¹, Oldrich Rakovec^{1,2}, Pallav Kumar Shrestha¹, Bram Droppers³, Leandro Avila⁴, Shima Azimi⁵, Hossein Salehi⁵, Nicolas Cortes-Torres⁶, Nathaly Güiza-Villa⁶, Ruben Imhoff⁷, Felix Frances⁶, Stefan Kollet⁴, Riccardo Rigon⁵, Albrecht Weerts^{7,8}, Almudena García-García¹, and Luis Samaniego^{1,9}

¹Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany

(ehsan.modiri@gmail.com)

²Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Praha-Suchdol 16500, Czech Republic

³Department of Physical Geography, Utrecht University, P.O. Box 80.115, 3508 TC, Utrecht, The Netherlands

⁴Institute of Bio- and Geosciences Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany

⁵Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano, 77, 38123, Trento, Italy

⁶Research Group of Hydrological and Environmental Modelling (GIMHA), Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camí de Vera, s/n. 46022, Valencia, Spain

⁷Operational Water Management & Early Warning Department, Deltares, P.O. Box 177, 2600 MH, Delft, The Netherlands

⁸Hydrology and Environmental Hydraulics group, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands

⁹Institute of Environmental Science and Geography, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany

Accurate representation of terrestrial Essential Climate Variables (tECVs) is crucial for practically understanding the Earth's climate system and supporting policy decisions. This study initiates benchmarking practices within the Land Surface/Hydrologic Model (LSM/HM) communities by integrating high-resolution data with hyper-resolution hydrological modelling. The European Space Agency (ESA)-funded 4DHydro project employs six advanced LSM/HMs: Community Land Model (CLM), GEOfram, mesoscale Hydrologic Model (mHM), PCRaster Global Water Balance (PCR-GLOBWB), TETIS, and wflow_sbm.

We benchmark, calibrate, and analyze scalability using consistent EMO1 precipitation forcings, focusing on 1 km spatial resolution. We introduce a novel multi-basin (MB) calibration technique based on streamflow data from the Po, Rhine, and Tugela River basins, highlighting its impact on model performance. Scalability analysis evaluates computational trade-offs and performance improvements at higher resolutions while ensuring flux matching. The study includes 34 simulations addressing water balance closure to enhance tECVs.

Key findings explore the advantages of high-resolution modelling, introducing a reference benchmark dataset of 1 km hydrological simulations, optimal gauge selection for MB calibration, and comparative performance of different LSMs and HMs in flux matching across spatial scales. These insights contribute to advancing the integration of high-resolution data with hydrological

modelling, promoting consistent and accurate terrestrial ECVs at regional and continental scales.