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Introduccion

Las series de tiempo hidroclimaticas (ST) son
fundamentales para diversos analisis, sin embargo,
frecuentemente presentan datos faltantes debido a
factores como fallas en los equipos de medicion,
errores de transcripcion o falta de registro oportuno
(WMO, 1994). Para cumplir con los criterios de
continuidad, homogeneidad y longitud establecidos
por la Organizacion Meteorolégica Mundial (WMO),
es necesario estimar estos valores ausentes. La
complejidad de esta tarea varia segun la variable
hidroclimatica  analizada, por ejemplo, Ia
precipitacion exhibe una distribuciéon espacial
irregular debido a los nucleos de lluvia, lo que
dificulta la estimacion de datos faltantes en estas
series (De Ledn & Dominguez, 2021). Por lo tanto,
se requiere emplear técnicas robustas que permitan
inferir de manera precisa los valores faltantes en ST
hidroclimaticas para garantizar la integridad y calidad
de los andlisis posteriores (Zhang & Post, 2018).

Materiales y métodos

Se recopilaron ST mensuales de 8 variables
hidroclimaticas (Brillo Solar, Evaporacién, Humedad
Relativa, Punto de Rocio, Precipitaciéon, Caudal,
Temperatura y Tensién de Vapor) de la base de
datos del IDEAM (Colombia), totalizando 9.268 ST.
La complementaciéon de las ST se desarrollé
mediante una RNA del tipo Perceptrén Multicapa.
Los predictores se seleccionaron realizando una
correlacion cruzada con estaciones dentro de un
bafer de 250 km (Excepto para precipitacion que
debido a su gran densidad se usé un buffer de 150
km), con 25 rezagos (-12 hasta 12 meses). Para el
entrenamiento, ajuste y evaluacién de precision de la
RNA, se empledé el médulo MLPRegressor de la
libreria SciKit-Learn de Python (Rossum, 1995). Una
de las métricas clave de esta libreria es el
Coeficiente de Determinacion, el cual provee una
estimaciéon cuantitativa del grado de ajuste
alcanzado por la RNA a los datos de entrenamiento,
permitiendo evaluar su desempefio y precision.

Se aplicé adicional un Analisis de Componentes
Principales (ACP) al 85% de la varianza para reducir
la dimensionalidad. Con los nuevos predictores del
ACP, se construy6 el conjunto de entrenamiento
para la RNA y posteriormente se predijeron los

valores faltantes. El flujo de trabajo se describe en la
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Figura 1. Diagrama de flujo de la metodologia
planteada

Resultados y discusién

Los resultados obtenidos del entrenamiento de la
RNA para la estimacion de datos faltantes en ST
hidroclimaticas son prometedores. El desempeio del
modelo se evalué mediante el margen de error medio
alcanzado para cada variable, observandose valores
aceptables en general.

Para la variable Brillo Solar, se logré6 un margen de
error del 9.87%, indicando una capacidad notable de
la RNA para capturar los patrones subyacentes en
esta serie temporal. Un resultado similar se obtuvo
para la Evaporacion, con un 10.89% de error,
demostrando la habilidad del enfoque para modelar
adecuadamente las complejas interacciones que
gobiernan esta variable.

Las variables Humedad Relativa, Punto de Rocio y
Tension de Vapor presentaron margenes de error
mas elevados, (13.65%, 13.08% y 1517%
respectivamente). Aunque aceptables, sugieren una
mayor dificultad de la RNA para capturar las sutilezas
y no linealidades intrinsecas a estas variables
atmosféricas relacionadas con la humedad.
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En las Figuras 2 y 3 se presenta el limite donde se
ubica el 70% de las estaciones evaluadas, para la
precipitacion fue del 16% mientras que para el caudal
fue del 20% el error limite.
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Figura 2. Evaluacion del error en las series de
precipitacion evaluadas
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Figura 3. Evaluacion del error en las series de caudal
evaluadas

En cuanto a la Precipitacién, variable de gran
importancia hidrolégica, el modelo exhibié un
prometedor 12% de error. Resultado destacable,
considerando los patrones altamente variables y
aleatorios que caracterizan a los eventos de
precipitacion conociendo que trabajos previos
(Fagandini et. al. 2024) han reportado la dificultad en
la estimacion precisa de datos faltantes para esta
variable utilizando técnicas tradicionales.

Para el Caudal, variable clave en aplicaciones
hidraulicas, el error fue 15.4%, ligeramente mas
elevado que para otras variables. Este hallazgo
sugiere posibles complicaciones al representar las
intrincadas relaciones lluvia-escorrentia y otras
variables que influyen en el flujo de los cauces
(Dembélé et. Al. 2019). No obstante, el resultado es
alentador y deja margen para mejoras futuras.
Finalmente, la Temperatura present6 el menor error
(3.66%), indicando gran precisién de la RNA.
Conclusiones

resultados demuestran la

En conjunto, estos
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capacidad general de las Redes Neuronales
Artificiales para estimar datos faltantes en series
hidroclimaticas complejas con niveles razonables de
precisidn, a excepcion de las variables dependientes
de la humedad atmosférica, que parece representar
un desafio particular para este enfoque. Aunque hay
margen para mejorar aun mas el desempefio, el
enfoque propuesto supera a muchos métodos
convencionales, particularmente para variables
dificiles de modelar como la precipitacién y el caudal.

Futuras investigaciones podrian explorar diferentes
arquitecturas y algoritmos de entrenamiento de RNA
para optimizar los resultados, con especial énfasis
en las variables problematicas. Ademas, la
incorporacion de informacion adicional, como datos
espaciales o variables exdgenas relevantes
(correlacion con diferentes variables), podria mejorar
la representacion de los procesos fisicos
subyacentes y conducir a estimaciones aun mas
precisas.
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